Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid.
نویسندگان
چکیده
Lipid peroxidation (LPO) is induced by a variety of abiotic and biotic stresses. Although LPO is involved in diverse signaling processes, little is known about the oxidation mechanisms and major lipid targets. A systematic lipidomics analysis of LPO in the interaction of Arabidopsis (Arabidopsis thaliana) with Pseudomonas syringae revealed that LPO is predominantly confined to plastid lipids comprising galactolipid and triacylglyceride species and precedes programmed cell death. Singlet oxygen was identified as the major cause of lipid oxidation under basal conditions, while a 13-lipoxygenase (LOX2) and free radical-catalyzed lipid oxidation substantially contribute to the increase upon pathogen infection. Analysis of lox2 mutants revealed that LOX2 is essential for enzymatic membrane peroxidation but not for the pathogen-induced free jasmonate production. Despite massive oxidative modification of plastid lipids, levels of nonoxidized lipids dramatically increased after infection. Pathogen infection also induced an accumulation of fragmented lipids. Analysis of mutants defective in 9-lipoxygenases and LOX2 showed that galactolipid fragmentation is independent of LOXs. We provide strong in vivo evidence for a free radical-catalyzed galactolipid fragmentation mechanism responsible for the formation of the essential biotin precursor pimelic acid as well as of azelaic acid, which was previously postulated to prime the immune response of Arabidopsis. Our results suggest that azelaic acid is a general marker for LPO rather than a general immune signal. The proposed fragmentation mechanism rationalizes the pathogen-induced radical amplification and formation of electrophile signals such as phytoprostanes, malondialdehyde, and hexenal in plastids.
منابع مشابه
Lipid Profiling of the Arabidopsis Hypersensitive Response Reveals Specific Lipid Peroxidation and Fragmentation Processes: Biogenesis of Pimelic and Azelaic Acid1[C][W]
Lipid peroxidation (LPO) is induced by a variety of abiotic and biotic stresses. Although LPO is involved in diverse signaling processes, little is known about the oxidation mechanisms and major lipid targets. A systematic lipidomics analysis of LPO in the interaction of Arabidopsis (Arabidopsis thaliana) with Pseudomonas syringae revealed that LPO is predominantly confined to plastid lipids co...
متن کاملArabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid
Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype o...
متن کاملExploring the Protective Effect of Ascorbic Acid and Aqueous Extract of Spirulina platensis on Methotrexate-Induced Lipid Peroxidation
This study was designed to explore the protective effects of ascorbic acid and water extract of Spirulina platensis (blue green algae) on methotrexate-induced lipid peroxidation using goat liver as the lipid source. This in vitro evaluation was done by measuring the malondialdehyde, 4-hydroxy-2-nonenal, reduced glutathione and nitric oxide content of tissue homogenates....
متن کاملMetabolic Signature of Electrosurgical Liver Dissection
BACKGROUND AND AIMS High frequency electrosurgery has a key role in the broadening application of liver surgery. Its molecular signature, i.e. the metabolites evolving from electrocauterization which may inhibit hepatic wound healing, have not been systematically studied. METHODS Human liver samples were thus obtained during surgery before and after electrosurgical dissection and subjected to...
متن کاملEvaluation of the Salivary Total Antioxidant Capacity and Lipid Peroxidation Status in Type 2 Diabetes Mellitus Patients
Objective: Type 2 diabetes mellitus (T2DM) is a multifactorial disorder with various disturbances in biochemical processes such as antioxidant status and lipid peroxidation. The aim of present study was evaluation of the oxidative stress markers in saliva of T2DM patients. Materials and Methods: In this study, 80 (40 T2DM and 40 control) individuals were assessed. The salivary total antioxidan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 160 1 شماره
صفحات -
تاریخ انتشار 2012